- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Fitzgerald, Justin (2)
-
Joiner, Wilsaan_M (2)
-
Bagley, Anita_M (1)
-
Battraw, Marcus_A (1)
-
Foray, Katherine (1)
-
Gianferrara, Pierre_G (1)
-
James, Michelle_A (1)
-
Schofield, Jonathon_S (1)
-
Winslow, Eden_J (1)
-
Zhou, Weiwei (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Children born with congenital upper limb absence exhibit consistent and distinguishable levels of biological control over their affected muscles, assessed through surface electromyography (sEMG). This represents a significant advancement in determining how these children might utilize sEMG-controlled dexterous prostheses. Despite this potential, the efficacy of employing conventional sEMG classification techniques for children born with upper limb absence is uncertain, as these techniques have been optimized for adults with acquired amputations. Tuning sEMG classification algorithms for this population is crucial for facilitating the successful translation of dexterous prostheses. To support this effort, we collected sEMG data from a cohort of N = 9 children with unilateral congenital below-elbow deficiency as they attempted 11 hand movements, including rest. Five classification algorithms were used to decode motor intent, tuned with features from the time, frequency, and time–frequency domains. We derived the congenital feature set (CFS) from the participant-specific tuned feature sets, which exhibited generalizability across our cohort. The CFS offline classification accuracy across participants was 73.8% ± 13.8% for the 11 hand movements and increased to 96.5% ± 6.6% when focusing on a reduced set of five movements. These results highlight the potential efficacy of individuals born with upper limb absence to control dexterous prostheses through sEMG interfaces.more » « less
-
Foray, Katherine; Zhou, Weiwei; Fitzgerald, Justin; Gianferrara, Pierre_G; Joiner, Wilsaan_M (, eneuro)Short-term motor adaptation to novel movement dynamics has been shown to involve at least two concurrent learning processes: a slow process that responds weakly to error but retains information well and a fast process that responds strongly to error but has poor retention. This modeling framework can explain several properties of motion-dependent motor adaptation (e.g., 24 h retention). An important assumption of this computational framework is that learning is only based on the experienced movement error, and the effect of noise (either internally generated or externally applied) is not considered. We examined the respective error sensitivity by quantifying adaptation in three subject groups distinguished by the noise added to the motion-dependent perturbation. We assessed the feedforward adaptive changes in motor output and examined the adaptation rate, retention, and decay of learning. Applying a two-state modeling framework showed that the applied noise during training mainly affected the fast learning process, with the slow process largely unaffected; participants in the higher noise groups demonstrated a reduced force profile following training, but the decay rate across groups was similar, suggesting that the slow process was unimpaired across conditions. Collectively, our results provide evidence that noise significantly decreases motor adaptation, but this reduction may be due to its influence over specific learning mechanisms. Importantly, this may have implications for how the motor system compensates for random fluctuations, especially when affected by brain disorders that result in movement tremor (e.g., essential tremor).more » « less
An official website of the United States government
